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Fokker-Planck perspective on stochastic delay systems: Exact solutions and data analysis
of biological systems
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Stochastic delay systems with additive noise are examined from the perspective of Fokker-Planck equations.
For a linear system, the exact stationary probability density is derived by means of a delay Fokker-Planck
equation. We show how to determine the delay equation of the linear system from experimental data, and
corroborate a fundamental result previously obtained bgHier and Mensch. We also propose a method to
derive delay equations of nonlinear systems from experimental data. To this end, the theory of multivariate
Fokker-Planck equations is used. The applicability of this method is demonstrated for stochastic models
describing tracking and pointing movements of humans.
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I. INTRODUCTION d
G XD =hX(1),X(t= )+ Q" g(X(t) X(t= )" (t)

In recent years, researchers have become increasingly in-
terested in dynamical systems subjected to deflayd1]. In +Qr(t) 2)
particular, many biological systems call for a description by
means of differential equations involving time-delayed vari-and describes a system subjected to both additive and multi-
ables. In many cases, the delay reflects transmission tim¢gicative noise. For examples see REf9] and Sec. Il B 2
related to the transport of matter, energy, and informatior{note that in Ref[19] colored noise has been used while we
through the system under investigation. Therefore, delay syill use white noisg¢ Functionh(x,y) corresponds to a de-
tems can often be regarded as simplified but very useful dgerministic force that depends only on the nondelayed vari-
scriptions of systems involving a reaction chain or a transable X(t) and the delayed variablX(t— 7). If Q'g?<Q
port process. Some typical examples of biological system$olds, additive noise dominates multiplicative noise. Assum-
that have been interpreted as delay systems are discussedifig thatQ’g?<Q holds, several biological phenomena have
Refs.[12-22 and summarized in Table I. For further ex- been successfully addressed: stochastic resong2&e7
amples, the reader is referred to R3] (e.g., for time-discrete delay systefi§, delayed phase os-

In recognition of the relevance of delay models, the quescillators [28], and diffusively coupled neural oscillators
tion arises how to determine the evolution equations of delay29]), postural sway[30], spike train coherenc¢31,32,
systems from experimental data. Since experimental data akgain activity exhibiting 1f noise [33], stimulus-induced
usually subjected to fluctuations, we deal with stochastic desynchronization of brain activity34], critical fluctuations
lay systems rather than deterministic ones. Then, the proble@nd relaxation times of coordinated finger movements and
at hand is to map stochastic delay systems to stochastic delayovement related brain activif)85—39, and bistability of
models by means of data analysis techniques that are as uneisy motor control systemgl0]. Although additive noise
biased as possible. In what follows, we will consider systemsgnodels have been widely applied in the study of biological
described by a scalar random variaB{ét) defined on the systems, it has also been demonstrated that multiplicative
real lineQ)=R and subjected to natural boundary conditionsand parametric noise can play important roles in biological
[24]. Taking a general point of view, we may describe suchsystems, for example, in human motor control systems in
systems by means of stochastic differential equations of thgenera[41] and in the pupil light reflex in particuldd9,42.
form From the recognition that multiplicative or parametric noise

can make essential contributions to system dynamics, noise-
d induced shifts of bifurcation points related to pointing tasks
e X0 =ho(X(t), X(t=17), JO'T/(1)+QI'(t) (1) [21], stimulus-induced synchronization of brain activitg],
t and corrective movements on short time scales under de-
layed feedback44] have been studiedor further examples,
for t=0, =0, andX(t)=¢(t) for te[—7,0]. Here,r de-  see Ref[45]). In the present paper, we confine ourselves to
notes the delay of the systerfi(t) andI'’'(t) denote fluc- systems in which additive noise sources dominate multipli-
tuation forces. The variable® andQ’ denote noise ampli- cative and parametric noise sources and, consequently, con-
tudes. Ifhy includes expressions such A¢t)I'' (t) or X(t sider systems that can be described by means of stochastic
—7)I''(t), we deal with parametric noise. A promising ap- delay equations of the form
proach to analyze systems with parametric noise is to expand
hy with respect td™’ and to neglect higher-order termslof
[25]. The equation thus obtained can be cast into the form

d
G X(O=hX(1).X(t=7)+QI(t). ()
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TABLE |. Examples of biological delay systems.

No. Type Phenomenon Delay T

1 Reaction chain Population dynamids?] Supply storages,
maturation period

2 HIV infection dynamicd13,14] Inactive infected phase  1-2 days4]

3 Transport processes Neural netwofks, 16 Neural signal
transmission times

4 Breathing[17,18 Information 9s
transmission time

5 Pupil light reflex[19] Neural signal 300 ms
transmission times

6 Tracking movementg20-22 Artificial delay 25-50 mg22]

of visual feedback

Moreover, we defind'(t) by a Langevin force witfT'(t))  variate Gaussian distributioiisee also Re{50]). Therefore,
=0 and(T'(t)T'(t"))=45(t—t’) [24]. In Sec. ll, we will we can substitute the probability densitid3(x) and
show how to determine the delay equati@®), that is, the Pg(x,t;y,t—7) defined by

unknown quantitiesh and Q, from experimental data. The

focus will be on stationary systems for which the detagan 1 X2

either be estimate(see examples 1-5 of Tablg dr corre- )= exp[ - ] (6)

sponds to a control variablsee example 6 of Table and, o V2mK(T) 2K(7)

consequently, can be fixddee, however, Ref46]). We will

distinguish between the linear and nonlinear cases. In thand

linear case, we will derive the exact stationary solution of the

stochastic delay equatigSec. Il A). By means of this solu- c(7)V1-d?(7)

tion, the parameters of the linear model can be estimated Ps(X,t;y,t—7)=——————exp{—c(7)[x*+y?

from experimental data. In the nonlinear case, exact solu- m

tions are not available. Therefore, we will propose a data —2d(7)xy]} (7)

driven method to determine the model equat{@nhwithout

any knowledge of the stationary soluti¢gec. Il B. into Eq. (5) in order to determine the parametexsr) and

d(7). As shown in Ref.[46] one thus obtainsc(7)

Il. STATIONARY STATES :2b2K(T)/{[2bK(T)]2—[Q—ZaK(T)]Z} and d(7)=[Q

—2aK(7)]/2bK(7). Note thatc(7) andd(7) depend on the

A. Linear case: Exact solution and data analysis A A )
varianceK(7) of solution (6). That is, the delay Fokker-

In the linear case, Eq3) reads Planck equatiori7) does not provide us with sufficient infor-
d mation to determineK(7) as a function ofr. Therefore,
&X(t)z —aX(t)—bX(t—7)+QI(t). (4)  K(7) has been derived in two previous studies from the sto-

chastic delay differential equatiad), see Kichler and Men-
. . sch[50] and Guillouzicet al.[47]. Unfortunately, these stud-

In what follows, we W'“. F:onS|der_the casazlo, b;o and ies yield two equations foK(7) that are formally different.

a+b>0. The probablll_ty_ density ofX(t) 'S_given _by In addition, both studies do not utilize the delay Fokker-

P(x,) =(5(x—X(t))). Similarly, we can define the joint pjanck equatiors) and, therefore, are mathematically elabo-

probability density P(x,t;y,t—7)=(5(x—X(1))o(y—X(t  rated. Here, we will discuss an alternative, more compact

—7))). Then, the delay Fokker-Planck equation associateyerjyation ofK(r). This derivation will exploit some com-

with Eq. (4) reads putational steps used in both studies and, in this sense, will

unify the two approaches discussed in Réf,50. More-
axP(x,t)+bf yP(x,t;y,t—7)dy over, in deriving the variance functidd(7), we will obtain,
Q as a by-product, the ingredients to determine the parameters
a, b, andQ from experimental data.

(5) To begin with, from Eq(4), we realize that the stationary
mean value ofX(t) denoted by X) satisfies G= —(a+b)
X(X)¢ and, consequently, equals zero for a#0. There-

see Refs[47-49 for details. Since in Eq4) the fluctuation  fore, the varianc&(7) is given by the second moment Xf

force is Gaussian distributed and the drift force is linear, thek(7) =(X?). Taking the boundary conditions &f(t)

multivariate probability densitiesPg(X1,t1, ... Xy, tn) =R into account, from the delay Fokker-Planck equatisn

=(8(x,—X(t1))- - - 8(xny—X(tn)))st correspond to multi- andd(X?(t))s/dt=0, we obtain

T o
gt 0= o8

Q #
to P P(x,t),
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2a(X2(1))+ 2b(X (DX (t— 7))s=Q €) , C@)

now examine the stationary autocorrelation function defined

by means of partial integration. Following Refd.7,50 we Q/ZK
by

\| C0)=K

C(2)=(X()X(t+2))st, ©) /

which satisfies the symmetry relati€® (z)=C (—2). We
assume tha€,(z) is a continuous function with respect zo 0
for the stochastic process defined by . In particular, we
assume thatC_(z) is continuous atz=0: lim,_,C.(2)
=C,(0). Our objective is to deriveC,(z) for all z Then, FIG. 1. Shape of the autocorrelation functi@n(z) aroundz
K(r) can be computed fromC.(2) like K(7) =0 (tlhick. line). dC,(z)/Qz i.s not continuous at=0. The slope at
—lim,_.,C(2)=C,(0). In order to determineC(z), we  2=0 is given byQ/2 (thin line).
will exploit Eq. (8) as obtained from the Fokker-Planck ap-
proach, which can be written due to the symmetry relationConsequentlyC_./dz is not continuous at=0. Moreover,
C,(—7)=C,(7) in terms ofC (z) as if we evaluate Eq(11) for z=0 and take Eq(10) into ac-
count, we see that at=0 the derivative ofC,(z) vanishes:

2aC(0)+2bC,(7)=0Q. (10
Next, we will derive a differential equation f&,(z), solve dc,(0) B Q0
the equation, and determine the integration constants by dz aC(2)=bC(—-7)+ 2 =0. (17)

means of the Fokker-Planck approach result, @g). From
Eq. (4), we obtain
These results are summarized in Fig. 1.
Now, let us solve E¢(13) and determin&(7)=C_(0) by
ut+z>
st

dC,(2) —<X dX(u)

means of the limiting cas€,(0)=Iim,_,C(2). To this

d d
z . end, we differentiate Eq(14) for z>0 with respect toz
=—aC,(2)~bC,(z— N+ VQX(DT(t+2)).  Which gives us
(11)
. _ d*C.(2) dC.(z) ~ dC.(u)
Using the delay Fokker-Planck equatitB) and the stochas- 2 =—a dz +b du lu=rez
tic delay equatior(4), we can show tha¢X(t)T'(t+2z)) is d
given by dC.(2)
=—al— +bC.(7—2)|—-b%C, (18
o Q/2 for z=0 z
QXTI (t+2))g= 0 for 250 (12
=(a’—b?)C(2). (19
see the Appendix. Consequently, for0, Eq.(11) reads
dC.(2) Note that in order to derive Eq19) from Eq. (18), we have
4, ~ 2CA2)=bCi(z—7) (13)  usedC(z)=C(-z) and Eq.(13). We putw=\[a’—b?[ and

distinguish three case$l) b>a=0, (2) a>b=0, and(3)
a=b>0. Then, forz=0, the solutions of Eq(19) are de-

=—aC/ (z)—bC(7—2). (14 scribed by
Substituting Eq.(10) into Eqg. (14), the right-hand side de-
rivative of C,(z) atz=0 can be found as Cl(z)=Ck(0)coq wz) +esin(w2z), (20)
_dC(2)  Q
ma T2 (19 C2(2)=C(0)coshwz) +e'sinh(wz),  (21)

Due to symmetry relatio€ .(z) =C (—z), we conclude that

3 _ 3
the corresponding left-hand side derivative is given by Ci(2)=C3(0)+fz, (22

lim dC.(2) = 9 (16) whereC'(0), g, €', f are so far unknown variables a@i(0)
z0 4z 2 denotes the limit value lim,C'(z) = C'(0). Thevariablese,
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e’, f can be determined by means of Efj5). Thus, we get 3. 3 Q
e=e'=—Q/[20] andf=—Q/2 and CHD=C (0~ 52 9
o Q sin(w2)
CH2)=C;(0)codwz)— 5 — —, 23 for 2=0. We would like to emphasize that these relations
hold for z=0 only. Forz<0, we can comput€'(z) from
Q sinh(wz) the symmetry conditiol€' (z)=C' (—z). Consequently, for
2 — 2 - T T 1
Cr(2)=Cr(0)costwz) ~ 3 o (24) ze R, we obtain

rci(z):ci(O)cos(wz)—gw—lsir(w|z|), b>a=0
C.(2)=A{ Cf(z)=Cf(0)cosr(wz)—%w_lsinr(w|z|), a>b=0 (26)
3 3 Q —
Ci(z)=C:(0)— E|z|, a=b>0.
\

Finally, let us determineCiT(O) by means of Eq(10) ob- to the three casds>a=0, a>b=0, anda=b>0. We first
tained from the delay Fokker-Planck equati@i Substitut- considerb>a=0, that is,Ci(O). Forb>a=0 and =0,
ing Egs. (23)—(25) into Eq. (10), the variancesC!(0) are  we haveb/o<1=1+ bw!sin(wr)=0. That is, the numera-

found to be tor of C1(0) does not vanish. As far as the denominator is
concerned, we realize that fir>a=0, there exists a*
K(7)=C,(0) with 7™ we[0,7] such that a+bcoswr™)=0. For 7
; Q[ 1+bw-tsin(wr) E[O.,T:k) we havea+bcos@u7")>0. The upper Iimlitr* is
cl(0)== @ i ) b>a=0 explicitly defined by w=arcco§—al/b}<m. In view of
7 2| atbcogwr) |’ these considerations, the varian€ér) becomes infinite in
the limit 7— 7* and the stationary solutiai®) exists only for
_{ c20)- Q1+ bwlsinf(an')) a>b=0 7e[0,7%). Next, let us conside€’(0) with i=2,3. From
T 2\ a+bcoswr) |’ the definitions ofC!(0) in Eq. (27), we read off thatC'(0)
<o for all 0=7<e andi=2,3. Consequently, foa>b
3 Q(1+b7r\ Q B =0 anda=b>0 the Gaussian solutiof6) exists for every
kC,(0)= 21 axp =£(1+a7-), a=b>0. delay 7. Table Il summarizes these results.

Equations(26) and (27) have previously been derived by
(27) Kuchler and Mensch50] using an approach different from
the one presented here. Actually, our departure pdibtis
We realize that the limiting cases lim, ,_oC;(0)=C3(0)  the one used by Guillouziet al. [47]. Therefore, we have
and limyp.,.0C2(0)=C3(0) hold. Furthermore, in the shown here that the approaches bycKler and Mensch, on
limit of vanishing delay, we reobtain the variance of thethe one hand, and Guillouzét al., on the other hand, lead to
Ornstein-Uhlenbeck proce$g4]: we haveCy(0)=Q/[2(a  the same result. Moreover, we are now in the position to
+b)] for i=1,2 and C3(0)=Q/[4a]. Furthermore, our analyze stochastic delay systems with respect to the linear
analysis includes the well-known result for the Ornstein-model(4).
Uhlenbeck process as a special case. For the Ornstein- Our departure point is the hypothesis that we deal with a
Uhlenbeck process given by(t)z —av(t)+ \/61“('{), the system that can be described by the linear stochastic dglay
stationary autocorrelation reads (v (t)v(t+2))g equatlon(4).. Flrst of all, we can corroborgte our hypothe3|s
—Q[2a] lexp{—al4} and is continuous with respectzdut by determining the statlor_1ary probability densiB(x)
not continuously differentiable az=0 (Chap. 3 of Ref. =(8X—X(1)))s from experimental datX(t). If Py corre-
[24]). Fora>b=0, we reobtain this result by recognizing
that C2(0) andw reduce toC%(0)=Q/[2a] andw=a, re- TABLE Il. Definition domains of the Gaussian probability den-
spectively, and C2(z) is given by C%3z Sty (®.
=Q[2a] [ cosht?—sinh@z)] which leads to C%(z)
= Q[2a] " '[coshlz))—sinhialz))]=Q[2a] ‘exp{—alz) b=a=0 azb=0  azb=0
At this junction, it is useful to briefly discuss the domains ;< [0,w~tarccost-a/b)] =0 =0
of definition of the stationary probability densiti&®) related
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sponds to a Gaussian distribution, we have found support fahe theory and, in doing so, demonstrate that the linear delay
our hypothesis. IfP, differs substantially from a Gaussian equation(4) can be regarded as an appropriate model for the
distribution, our hypothesis is falsified. Alternatively, we in- system under consideration.
troduce a pseudoford~e(x) defined by

B. Nonlinear case: Multivariate Markov process

~ d and data analysis
h(x)=—=—=InPg(X). (289
dx 1. Data analysis based on multivariate Markov processes

From Eq.(6) we appreciate that for a linear stochastic delay We now consider the nonlinear stochastic delay equation

system,h(x) is linear with respect tox. Consequently, the (3)._Before we show h.OW to d_erlvla(x,y) andQ from ex-
perimental data, we briefly review some fundamental aspects

observati_on of a linear ps_eudof_orE(ax) would support our ¢ the data analysis of Markov proces$g&—55. Let X(t)
hypothesis that we deal with a linear delay system. Next, we_ () — p describe a Markov process defined by the Langevin

can determine the parametexsh, andQ for model(4) from L )
; ; . equation X(t)=h(X)+QT(t) for t=0 with X(0)=X,.
experimental dataQ can be derived from Eq(15): Then, h(x) corresponds to the first Kramers-Moyal coeffi-

dC.(2) cient D(x) ant_j, by definition ofD, can be computed _from

Q=-2 de . 29 h(x)=D(x)=limy,_o{ X(t+At) = X(t))x@y—x/At  which

z=0*+ can be expressed alternatively ash(x)=D(x)
=limy_o[At] Y[ o(y—X)P(y;t+At|x,t)dy using the con-

To determine the parametexsandb, we need two equations itional probability density P(X;t|x’,t")

involving these parameters. On the basis of the delay Fokker=p(x t:x’ t')/[,P(x,t;x’,t')dx with P(x,t;x’,t") =(8(x
Planck equatiori5) we can derive various equations involv- _ xt))s(x’ — X(t))). Similarly, we may consider a multi-
ing a andb and measurable correlation functions of the formyariate Markov process given by the random veckdt)
(X"()X™(t—7))s. One example is given by Eq8). An-  —(x, ... X,)e RN satisfying

other example can be derived by multiplying E8) with x*

and by integrating the equation thus obtained with respect to d
x. Then, integration by parts leads to g k(B =he(X) + JQr (1) (32
2a(X*(t))—2b(X*()X(t—7))=3Q. (B0 for k=1,...N with ([(t))=0 and (T (t)[(t))

. =5 6(t—t") [24]. Then, the force vecton=(h4, ... hy)
From Egs.(8) and(30) andQ given by Eq.(29), the param-  can be computed from the first Kramers-Moyal coefficients

etersa andb can be computed from as
3K2—(X*(t 1
p=2 X ) , (%) =Dy = lim (Xt AD =X (D).
2 KOCOX(t=1))s= CANXA (D) A0
(33
azw (31 In the multivariate case, the computation fofx) can be
2K simplified if there is additional information available regard-

. 5 ing the arguments=(x4, ... Xy) of h(x). If we know a
with K=K(7)=(X(t))s and C(7)=C.(=7)=(X()X(t  priori thath,(x) depends only oM variables withM <N,
—7))st (see above Having determined the parametersb,  say, onx, X, , then Eq.(33) becomes

1 l, ooy Ml .

and Q from experimental data, we can check once again

whether or not the data are consistent with our hypothesis 1
that we deal with a linear delay system. To this end, we may hk(xkl, cen ,ka)z lim E(XK(H—M)
plot Py(x,t;y,t—7;a,b,Q) as predicted by Eq(7) versus At—0

P.(x,t;y,t—7) as obtained from the experimental détar

the sake of convenience, we may restrict our attention to
some moments of the formiX"(t)X™(t— 7))s which can (34)
easily be derived from experimental data, on the one hand,

and computed from Ed7), on the other handIf the theo-  So far, this fundamental technique for the analysis of Markov
retical result agrees well with the empirical one, we have grocesses has been applied to fluid dynamics, traffic flows,
strong indication that our hypothesis was correct. In particuengineering problems, tremor data, economics, and so on
lar, the data analysis based on the exact stationary solutidifior references see the preceding/e would like to point out
given by Eqgs.(6) and (27) is tailored to delay systems for that this procedure can also be applied to non-Markov pro-
which 7 is a control variablde.g., see example 6 of Table | cesses described by E@®2) wherel', denote general fluc-

If such a delay system is linear or can be lineariged., for  tuation forces withT'\)=0. In this case, the limiting proce-
weak noise sources, See Rg46]), we can plotK(7) as  duresAt—0 and(---) are interchanged.e., in Egs.(33)
obtained from the experiment agair§(r) as predicted by and(34), we have(lim,;_o---) instead of lim_q(---)).

- Xk(t)>Xk1(t):xk1 ..... Xe, (=% -
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stochastic process with delay

X®  P(x,t)
t
| | | | | -
[ | | | |
-T 0 T kT  T(k+l)
| | |
> multivariate
Xo(t ) stochastic process
P(Xo,...,XN’t,)
XN()

t’ | t’
0 '7T 0 '7T
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=X (t"))8(y—X,_1(t"))) and recognize that in the station-
ary casd—x there exists a limit distributioR¢(x,y) of the
form lim,_ . Pr(X,y) = P(X,y). Consequently, if the system
under investigation exhibits a stationary behavior for this
stationary condition, indexk becomes arbitrary. Using

X (t")=X(t) and X 1(t")=X(t—7) and PgXx,y)
=(8(x—X(t))8(y—X(t— 7))}, from Eg.(37) we obtain
1
h(x,y) = lim ——(X(t+At) = X(t))stx(t)=x X(t— )=y »
AtHOAt

(38

whereX(t) andX(t— 7) denote stationary random variables
of the process under consideration—as indicated. Finally, at

FIG. 2. Description of a stochastic process with delay in termsissue is to determine the fluctuation stren@lof a stochas-

of a multivariate stochastic process without delay.

Since we eventually use a small but finik¢ to carry out the

limit At—0 and a large but finite number of samples to

compute the meax- - -), the order of the limiting proce-
dures is irrelevant.
In the following, we will show how to apply the data

analysis technigque to data obtained from stochastic dela
systems. To this end, we build on a recent study in which i
was demonstrated that stochastic delay systems satisfyi
Eqg. (3) can alternatively be described by multivariate Mar-

kov processef49]. Let X(t) be defined by Eq(3). Then, for
te[kr,(k+1)7] andk=0,1,2 ..., we camassign toX(t) a

tic delay system with additive noise. To this end, consider the
delay Fokker-Planck equation

af h(X,y)P(x,t; ay+ 2" p
axJ g (X,y)P(x,t;y,t—7)dy 2 0 (x,t)

(39

E P(x,t)=

lNwat corresponds to E@3). Multiplying Eq. (39) by X2, in-
r{ﬁgrating with respect t@, we obtain for the stationary case
t

e equivalence

Q=2(X(Dh(X(1),X(t=7)))st- (40)

(k+1)-dimensional Markov process described by the ran-

dom variablesX;(t") satisfying

d
@xiu'):h(xi<t'>,xi_1<t'>>+@“m (35)

fori=0,... k andt’ €[0,7], wherel'; denote again statis-
tically independent Langevin forces defined by(t—ir)
=TI'(t) andX_ is defined byX_1(z) = ¢(z— 7), see Fig. 2.

This multivariate Markov process is equivalent to the sto-

chastic procesX(t) defined by the delay equatidB) in the
sense that for everl, we have

X(t) =X, (t—k7) (36
or X(t) =X,(t") with t’=t—kr. The drift functionh(x,y) in
Eq. (35 can now be computed from the random variaties
andX;_4. From Eq.(34), it follows that

1
h(x,y)= lim —,<Xk(t' +At")
At'—0

= X)) x, () =xX, (") =y - (37)
Equations(36) and (37) can be used to determirtgx,y)
within an intervalt e[ kr,(k+ 1) 7] of length 7 based on the
experimental datX(t). In order to improve the accuracy of
the averag€ - - - ) occurring in Eq.(37), we need to circum-
vent the constrainte[k7,(k+1)7]. To this end, we con-
sider the joint probability density P (X,y)=(d8(x

That is, having obtaineti(x,y) from Eq. (38), the average
(40) gives us the fluctuation streng@

2. Examples

Our next objective is to demonstrate that E2B) can also
be used under the hypothesis that we deal with ergodic sys-
tems. Then, the ensemble average in(B8§) can be replaced
by the time average

hixy)= fim — fim —
X,¥y)=1m — Iim —
AtHOAtNOHOONO

No
X 2 [X(t AD = X(6) Ixqty=xx - =y (4D

We illustrate the power of Eq41) by evaluating artificially
generated trajectorie§(t). To this end, we simulate stochas-
tic delay equations of forn8) by means of an Euler forward
scheme, wherd'(t) is obtained from a Box-Miler algo-
rithm and time is discretized in ste@. The limiting case
At—0 is then realized by puttingt= 6t.

As a first example, we use the linear stochastic delay
equation(4). First, we have computed(t;) from Eq. (4).
Subsequently, we have evaluated the trajectdfy;) by
means of Eq(41). Figure 3 illustrates that the model equa-
tion (4) can indeed be reproduced by the proposed data
analysis technique. Second, we consider a model proposed
by Tasset al. for oscillatory tracking movements under de-
layed visual feedback22]. The model equation reads
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FIG. 5. Data analysis for the tanh modéB). Results obtained
from Eq. (43) (crossepare plotted against the drift functidm(y)

line). Crosses indicate results obtained from the data analysis. Lines —atanhgy) (solid line). Parametersa=2, c=/2, 7=0.1, Q

describe the model equation. Evaluationtoin 20 bins of width
Ax=Ay=0.1. Parametera=2, b=1, r=0.2, Q=1, No=10,
and 6t=0.02.

%X(t) = —asin([QX(t)— ¢o] — bSIMQAX(t—7)]
+Qr (1), (42

where() describes the oscillation frequenc¥(t) describes

=1, Ny=10%, 6t=0.01, andAx=0.2.

%X(t)z—atanl{cX(t—r)]vL JOr'(t) (43)

for X(t)eR and a>0, ¢>0. Similar models with drift
forces that vanish in the asymptotic linxit- =~ have been
used to describe coordinated human finger moveméls

and have been discussed in the context of stochastic reso-
nance[2]. In particular, human motor performance during

the relative phase between the tracking movement and thgsinting tasks has been modeled in terms of a tanh model
target motion and denotes a periodic variable defined ogih parametric noise that reads likEX/dt= —atanHcX(t

[0,27]. For example X=0 corresponds to a perfect syn- —)+yJQ'T'(t)], whereT'(t) denotes a fluctuation force

chronization of tracking and target movements. According toandQ’

Eq. (42), tracking movements involve two kinds of control

describes a fluctuation strendi®l]. As pointed out
in Ref. [21], such a model, however, does not take fluctua-

mechanisms. Movement control due to proprioceptive feedsons into account that directly affect finger positions. Such

back is described by the termsin QX(t)— ¢q] with a=0,

whereas the impact of the visual system is modeled by th

expressionbsi QX(t—7)] with b=0. We assume that the
artificially introduced delayr.,; dominates intrinsic delays of
the visual system such that the delain Eq. (42) is approxi-

matively given byr.,. The variableg, accounts in a crude

manner for intrinsic delays of the visual and proprioceptive

systems[see Eq.(39) in Ref. [46] and put¢(t)+Q7); /2
=X(t)]. We have simulated E¢42) and evaluated a station-
ary trajectory by means of E@¢41). The result is shown in

Fig. 4. Finally, we consider the tanh model given by

=2

FIG. 4. Data analysis for the delay moddPR). Drift h(x,y) as
a function ofx andy for h(x,0) (dashed ling and h(0)y) (solid

fluctuations may be described by extending the original
fhodel to obtain dX/dt=—atanHcX(t—7)+Q'T'(t)]
+/QI'(t). In line with our remarks in Sec. I, we may trans-
form the parametric model into a model including a multi-
plicative noise source like dX/dt=—atanHcX(t—17)]
—a/Q'T’ (t)/cosHcX(t— ]+ QI'(t). If additive noise
dominates multiplicative noisge.g., forQ’'<Q), we obtain
Eq. (43). Equation(43) corresponds to a nonlinear stochastic
delay equation of the form

d
X =h(X(t=m)+ JOr(v). (44)

For stochastic processes of this kind, E88) reduces to

1
h(y):E<X(t+At)_x(t)>|st;x(tfr)=y (45)

and Eq.(41) becomes

No

h(y)= lim L lim L >

X(t;+At) — X(t; — D)=y
AtHOAtNOHooNO i=1[ ( i ) ( |)]X(ti T)=Yy

(46)

line). Crosses represent results obtained from the data analysis.

Lines describe the model equation. Evaluationhdf 20 bins of
width Ax=Ay=0.1. Parametersa=2, b=0.5, r=0.2, Q=1,
do=—0.2, Q=1, Ny=1CF, and 5t=0.02.

We have numerically solved E¢43) and analyzed the sta-
tionary solution by means of E¢46). The result of the data

analysis versus the model equation is shown in Fig. 5.
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. CONCLUSIONS Therefore, as pointed out in the Introduction, a useful strate-

e gic approach is to consider only weak parametric noise
For_ nonde_la_lyed I\_/Iarkov_ d|f_fu5|on processé_,C{t) = . sources and to transform parametric models into models with

=R with additive noise satisfying the Langevin equation y,sipjicative noise sources. Consequently, in order to gen-

X(t)=h(X)+VQT'(t), the fluctuation strengt® can be de- eralize the results derived in the present paper, one may use

termined using the definition of the second Kramers-MoyalEq. (2) rather than Eq(1) as a departure point.

coefficient and the drift forcen can be derived from the

experimentally observed stationary probability dendity APPENDIX A: DERIVATION OF EQ. (12)
according th(x) = — Q™ 1d In P¢(x)/dx. The reason for this ) ) _
is that there is an analytical relationship betwézpandh, For a stochastic process defined by the linear delay equa-

namely, Py (x)=Z lexp{—V(X)/Q} with Z =[qexp tion (4), the evolution of X?(t)) can be obtained from Egs.
{—V(X)/Qldx andV(x) = — [*h(x")dx’, which is invertible. (4 and(5):

For stochastic delay systems subjected to additive noise,
we proposgd two methods to _determine in_ the stationary case E(Xz(t»: —2a(X2(1))— 2b(X(t)X(t— 7))
from experimental data the drift forces acting on the systems. dt
If the drift forces are linear, we can exploit the aforemen-
tioned approach for Markov processes because in this case +2\/6<X(t)l“(t)) (A1)
the analytical form of the stationary probability densRy
can be determined. We have shown that from autocorrelatioﬁnd
functions [such as K=(X2(t))s, (X*(t))s, (X(t)X(t
—7))st, ANd(X3(t)X(t—7))s], we can derive all parameters —(X?(t))=—2a(X?3(t))— 2b(X()X(t— 7))+ Q
(i.e.,a, b, andQ) of linear stochastic delay systems. Having dt
obtained these parameters by means of the exact solutions
for the stationary probability densit(x;K) and the sta-
tionary joint probability densityPg(x,t;y,t—7;a,b,Q), we
can in turn check our hypothesis that we are dealing with a \/6
linear delay system. In order to illustrate this approach, we (X(OT (1)) = 5. (A3)
have derived the stationary probability densRy; for all 2
parameters using an approach different from previous ap- . ) ) )
proaches by Kehler and Mensch, on the one hand, and Guil-At issue is now to determine the expressiof(t)I'(t+2))
louzic et al, on the other hand. In particular, we have dem-for z>0. To this end, we will make use of the solution of the
onstrated how to take advantage of the delay Fokker-Planckitial value problemz(t)=—az(t)+f(t) and z(to) =z,
equation proposed by Guillouziet al. [47]. For nonlinear  which reads z(t):zoexp{—a(t—to)}+f{oexp[—a(t
stochastic delay systems, analytical descriptions of stationary.t")\t') dt'. In recognition of this solution, E¢(4) can be

probability densities are not available. Consequently, a counsplved using the method of steps. First, we solve @gfor
terpart to the relatiom(x) = —Q~d In Pg(x)/dx mentioned ¢ o [0,7] which gives us

in the preceding is not available. We are confronted with a

situation known from the theory of multivariate Markov pro- t .

cesses described by Fokker-Planck equations. There are a X(t)=Y1(t):¢(0)e_at+f e JQr(t)
numerous multivariate stochastic processes for which ana- 0

lytical expressions for stationary distributions are not avail- —be(t' —7)]dt’ (A4)
able (e.g., Lorenz attractor with white nojseln such sys-

tems, drift forces can be determined from experimental datghere we have introduced the functidf. In particular, we
using a direct approach that does not require the knowledggave

about the stationary probability density of the system under

investigation, e.g., Ref$53,54]. Using this direct approach B T,

in combination with a reinterpretation of delay systems as X(7)=Y1(7)=p(0)e *"+ foe alrt )[@F(t,)
multivariate nondelayed systems, we developed a data driven

method in order to determine the drift forces of nonlinear —bo(t'—7)]dt’. (AB)
stochastic delay systems.

Our considerations were centered around stochastic sySecond, we solve Ed4) for t e[ 7,27] which gives us
tems involving additive noise sources. A more general class
of stochastic delay systems is described by #&y.However,
for systems of this kind, it is not at all clear that how to
interpret nonlinear expressions B{t) such as X+1')? or
tanh(X+T) [25]. For example, if['(t) denotes the random X[JQI'(t")—bY,(t'—7)]dt’, (A6)
variable of an Ornstein-Uhlenbeck process, a stochastic dif-
ferential equation as simple a$X/dt=—aX+I'%(t) re- where we have defined the functitfy. In detail, Eq.(A6)
quires a tedious and mathematically involved analy5. reads

(A2)

(see also Refl6]). By comparing these results, we obtain

t !
X(t)ZYz(t)=Y1(t)e‘a(t—7)+f e-alt-t)

T
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L T (4). Furthermore, from EqgA4)—(A7), we can deduce that
X(t)=¢(0)e a+foe AQI (1) ~be(t' = 7)]dt’  the termsL, are linear with respect td": L,[&,c,f,(t))
+Cofo(t')]=cili[ &, fa(t) ]+ CoLi[ &, fo(t")]. In particu-

C it , Cat lar, we havel;[ ¢,0]=0. With Eqg. (A8) at hand, we can
+ Le VQI'(t')—bg(0)e i show that the averageX(t)I'(t+z)) vanishes foz>0:
_bft/_Te—a(t'—’r—t”){\/ar(t//) <X(t)l“(t+z)>=2i (T(t+2)Li[o,T(t'<1)])
0
—b¢(t”—r)}dt”}dt’. (A7) =§i) Lil¢(T(t+2)[(t'<t))]
We can proceed with this approach introducing step by step => L[¢,0]=0. (A9)
i

auxiliary functions Y, in order to solve Eq.(4) for t
e[n7,(n+1)7]. In doing so, we realize that(t) can be

written as a superposition of terrbs like Taking Egs.(A3) and(A9) together, we get
M(n) S Q/2 for z=0
= ) '< + = ,
X()= 2 Lil$.T(t'<0] (A8) QXM (t+2))=) (¢ (A10)
with M (n) <o for a finite timet. It is clear from Eqs(A4)—  for the nonstationary case. In the linit>, the arguments

(A7) that the fluctuation ternh’(t’) occurs inL; with argu-  developed so far still hold. In particular Eq#\1) and (A2)
mentt’ =t as indicated in Eq(A8). This fact basically re- hold, and Eq(A9) holds withM(n)—c« for t—o. Conse-
flects the causality of the stochastic process described by Equently, in the stationary case, E§\10) becomes Eq(12).
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