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Fokker-Planck perspective on stochastic delay systems: Exact solutions and data analysis
of biological systems
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Stochastic delay systems with additive noise are examined from the perspective of Fokker-Planck equations.
For a linear system, the exact stationary probability density is derived by means of a delay Fokker-Planck
equation. We show how to determine the delay equation of the linear system from experimental data, and
corroborate a fundamental result previously obtained by Ku¨chler and Mensch. We also propose a method to
derive delay equations of nonlinear systems from experimental data. To this end, the theory of multivariate
Fokker-Planck equations is used. The applicability of this method is demonstrated for stochastic models
describing tracking and pointing movements of humans.
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I. INTRODUCTION

In recent years, researchers have become increasingl
terested in dynamical systems subjected to delays@1–11#. In
particular, many biological systems call for a description
means of differential equations involving time-delayed va
ables. In many cases, the delay reflects transmission t
related to the transport of matter, energy, and informat
through the system under investigation. Therefore, delay
tems can often be regarded as simplified but very useful
scriptions of systems involving a reaction chain or a tra
port process. Some typical examples of biological syste
that have been interpreted as delay systems are discuss
Refs. @12–22# and summarized in Table I. For further e
amples, the reader is referred to Ref.@23#.

In recognition of the relevance of delay models, the qu
tion arises how to determine the evolution equations of de
systems from experimental data. Since experimental data
usually subjected to fluctuations, we deal with stochastic
lay systems rather than deterministic ones. Then, the prob
at hand is to map stochastic delay systems to stochastic d
models by means of data analysis techniques that are a
biased as possible. In what follows, we will consider syste
described by a scalar random variableX(t) defined on the
real lineV5R and subjected to natural boundary conditio
@24#. Taking a general point of view, we may describe su
systems by means of stochastic differential equations of
form

d

dt
X~ t !5h0„X~ t !,X~ t2t!,AQ8G8~ t !…1AQG~ t ! ~1!

for t>0, t>0, andX(t)5f(t) for tP@2t,0#. Here,t de-
notes the delay of the system.G(t) and G8(t) denote fluc-
tuation forces. The variablesQ andQ8 denote noise ampli-
tudes. Ifh0 includes expressions such asX(t)G8(t) or X(t
2t)G8(t), we deal with parametric noise. A promising a
proach to analyze systems with parametric noise is to exp
h0 with respect toG8 and to neglect higher-order terms ofG8
@25#. The equation thus obtained can be cast into the for
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dt
X~ t !5h„X~ t !,X~ t2t!…1AQ8g„X~ t !,X~ t2t!…G8~ t !

1AQG~ t ! ~2!

and describes a system subjected to both additive and m
plicative noise. For examples see Ref.@19# and Sec. II B 2
~note that in Ref.@19# colored noise has been used while w
will use white noise!. Functionh(x,y) corresponds to a de
terministic force that depends only on the nondelayed v
able X(t) and the delayed variableX(t2t). If Q8g2!Q
holds, additive noise dominates multiplicative noise. Assu
ing thatQ8g2!Q holds, several biological phenomena ha
been successfully addressed: stochastic resonance@26,27#
~e.g., for time-discrete delay systems@2#, delayed phase os
cillators @28#, and diffusively coupled neural oscillator
@29#!, postural sway@30#, spike train coherence@31,32#,
brain activity exhibiting 1/f noise @33#, stimulus-induced
synchronization of brain activity@34#, critical fluctuations
and relaxation times of coordinated finger movements
movement related brain activity@35–39#, and bistability of
noisy motor control systems@40#. Although additive noise
models have been widely applied in the study of biologi
systems, it has also been demonstrated that multiplica
and parametric noise can play important roles in biologi
systems, for example, in human motor control systems
general@41# and in the pupil light reflex in particular@19,42#.
From the recognition that multiplicative or parametric noi
can make essential contributions to system dynamics, no
induced shifts of bifurcation points related to pointing tas
@21#, stimulus-induced synchronization of brain activity@43#,
and corrective movements on short time scales under
layed feedback@44# have been studied~for further examples,
see Ref.@45#!. In the present paper, we confine ourselves
systems in which additive noise sources dominate multi
cative and parametric noise sources and, consequently,
sider systems that can be described by means of stoch
delay equations of the form

d

dt
X~ t !5h„X~ t !,X~ t2t!…1AQG~ t !. ~3!
©2003 The American Physical Society12-1
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TABLE I. Examples of biological delay systems.

No. Type Phenomenon Delayt t

1 Reaction chain Population dynamics@12# Supply storages,
maturation period

2 HIV infection dynamics@13,14# Inactive infected phase 1–2 days@14#

3 Transport processes Neural networks@15,16# Neural signal
transmission times

4 Breathing@17,18# Information 9 s
transmission time

5 Pupil light reflex@19# Neural signal 300 ms
transmission times

6 Tracking movements@20–22# Artificial delay 25–50 ms@22#
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Moreover, we defineG(t) by a Langevin force witĥ G(t)&
50 and ^G(t)G(t8)&5d(t2t8) @24#. In Sec. II, we will
show how to determine the delay equation~3!, that is, the
unknown quantitiesh and Q, from experimental data. Th
focus will be on stationary systems for which the delayt can
either be estimated~see examples 1–5 of Table I! or corre-
sponds to a control variable~see example 6 of Table I! and,
consequently, can be fixed~see, however, Ref.@46#!. We will
distinguish between the linear and nonlinear cases. In
linear case, we will derive the exact stationary solution of
stochastic delay equation~Sec. II A!. By means of this solu-
tion, the parameters of the linear model can be estima
from experimental data. In the nonlinear case, exact s
tions are not available. Therefore, we will propose a d
driven method to determine the model equation~3! without
any knowledge of the stationary solution~Sec. II B!.

II. STATIONARY STATES

A. Linear case: Exact solution and data analysis

In the linear case, Eq.~3! reads

d

dt
X~ t !52aX~ t !2bX~ t2t!1AQG~ t !. ~4!

In what follows, we will consider the case:a>0, b>0 and
a1b.0. The probability density ofX(t) is given by
P(x,t)5^d„x2X(t)…&. Similarly, we can define the join
probability density P(x,t;y,t2t)5^d„x2X(t)…d„y2X(t
2t)…&. Then, the delay Fokker-Planck equation associa
with Eq. ~4! reads

]

]t
P~x,t !5

]

]x S axP~x,t !1bE
V

yP~x,t;y,t2t!dyD
1

Q

2

]2

]x2
P~x,t !, ~5!

see Refs.@47–49# for details. Since in Eq.~4! the fluctuation
force is Gaussian distributed and the drift force is linear,
multivariate probability densitiesPst(x1 ,t1 , . . . ,xN ,tN)
5^d„x12X(t1)…•••d„xN2X(tN)…&st correspond to multi-
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variate Gaussian distributions~see also Ref.@50#!. Therefore,
we can substitute the probability densitiesPst(x) and
Pst(x,t;y,t2t) defined by

Pst~x!5
1

A2pK~t!
expH 2

x2

2K~t!J ~6!

and

Pst~x,t;y,t2t!5
c~t!A12d2~t!

p
exp$2c~t!@x21y2

22d~t!xy#% ~7!

into Eq. ~5! in order to determine the parametersc(t) and
d(t). As shown in Ref. @46# one thus obtainsc(t)
52b2K(t)/$@2bK(t)#22@Q22aK(t)#2% and d(t)5@Q
22aK(t)#/2bK(t). Note thatc(t) andd(t) depend on the
varianceK(t) of solution ~6!. That is, the delay Fokker
Planck equation~7! does not provide us with sufficient infor
mation to determineK(t) as a function oft. Therefore,
K(t) has been derived in two previous studies from the s
chastic delay differential equation~4!, see Küchler and Men-
sch@50# and Guillouzicet al. @47#. Unfortunately, these stud
ies yield two equations forK(t) that are formally different.
In addition, both studies do not utilize the delay Fokke
Planck equation~5! and, therefore, are mathematically elab
rated. Here, we will discuss an alternative, more comp
derivation ofK(t). This derivation will exploit some com-
putational steps used in both studies and, in this sense,
unify the two approaches discussed in Refs.@47,50#. More-
over, in deriving the variance functionK(t), we will obtain,
as a by-product, the ingredients to determine the parame
a, b, andQ from experimental data.

To begin with, from Eq.~4!, we realize that the stationar
mean value ofX(t) denoted bŷ X&st satisfies 052(a1b)
3^X&st and, consequently, equals zero for allt>0. There-
fore, the varianceK(t) is given by the second moment ofX:
K(t)5^X2&st. Taking the boundary conditions ofX(t)PV
5R into account, from the delay Fokker-Planck equation~5!
andd^X2(t)&st/dt50, we obtain
2-2
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2a^X2~ t !&st12b^X~ t !X~ t2t!&st5Q ~8!

by means of partial integration. Following Refs.@47,50# we
now examine the stationary autocorrelation function defin
by

Ct~z!5^X~ t !X~ t1z!&st, ~9!

which satisfies the symmetry relationCt(z)5Ct(2z). We
assume thatCt(z) is a continuous function with respect toz
for the stochastic process defined by Eq.~4!. In particular, we
assume thatCt(z) is continuous atz50: limz→0Ct(z)
5Ct(0). Our objective is to deriveCt(z) for all z. Then,
K(t) can be computed from Ct(z) like K(t)
5 limz→0Ct(z)5Ct(0). In order to determineCt(z), we
will exploit Eq. ~8! as obtained from the Fokker-Planck a
proach, which can be written due to the symmetry relat
Ct(2t)5Ct(t) in terms ofCt(z) as

2aCt~0!12bCt~t!5Q. ~10!

Next, we will derive a differential equation forCt(z), solve
the equation, and determine the integration constants
means of the Fokker-Planck approach result, Eq.~10!. From
Eq. ~4!, we obtain

dCt~z!

dz
5 K X~ t !

dX~u!

du Uu5t1zL
st

52aCt~z!2bCt~z2t!1AQ^X~ t !G~ t1z!&st.

~11!

Using the delay Fokker-Planck equation~5! and the stochas
tic delay equation~4!, we can show that̂X(t)G(t1z)&st is
given by

AQ^X~ t !G~ t1z!&st5H Q/2 for z50

0 for z.0
, ~12!

see the Appendix. Consequently, forz.0, Eq. ~11! reads

dCt~z!

dz
52aCt~z!2bCt~z2t! ~13!

52aCt~z!2bCt~t2z!. ~14!

Substituting Eq.~10! into Eq. ~14!, the right-hand side de
rivative of Ct(z) at z50 can be found as

lim
z↓0

dCt~z!

dz
52

Q

2
. ~15!

Due to symmetry relationCt(z)5Ct(2z), we conclude that
the corresponding left-hand side derivative is given by

lim
z↑0

dCt~z!

dz
5

Q

2
. ~16!
02191
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Consequently,dCt /dz is not continuous atz50. Moreover,
if we evaluate Eq.~11! for z50 and take Eq.~10! into ac-
count, we see that atz50 the derivative ofCt(z) vanishes:

dCt~0!

dz
52aCt~z!2bCt~2t!1

Q

2
50. ~17!

These results are summarized in Fig. 1.
Now, let us solve Eq.~13! and determineK(t)5Ct(0) by

means of the limiting caseCt(0)5 limz→0Ct(z). To this
end, we differentiate Eq.~14! for z.0 with respect toz
which gives us

d2Ct~z!

dz2
52a

dCt~z!

dz
1b

dCt~u!

du
uu5t2z

52aFdCt~z!

dz
1bCt~t2z!G2b2Ct ~18!

5~a22b2!Ct~z!. ~19!

Note that in order to derive Eq.~19! from Eq. ~18!, we have
usedC(z)5C(2z) and Eq.~13!. We putv5Aua22b2u and
distinguish three cases:~1! b.a>0, ~2! a.b>0, and~3!
a5b.0. Then, forz>0, the solutions of Eq.~19! are de-
scribed by

Ct
1~z!5Ct

1~0!cos~vz!1e sin~vz!, ~20!

Ct
2~z!5Ct

2~0!cosh~vz!1e8sinh~vz!, ~21!

Ct
3~z!5Ct

3~0!1 f z, ~22!

whereCi(0), e, e8, f are so far unknown variables andCi(0)
denotes the limit value limz↓0Ct

i (z)5Ct
i (0). Thevariablese,

FIG. 1. Shape of the autocorrelation functionCt(z) aroundz
50 ~thick line!. dCt(z)/dz is not continuous atz50. The slope at
z50 is given byQ/2 ~thin line!.
2-3
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e8, f can be determined by means of Eq.~15!. Thus, we get
e5e852Q/@2v# and f 52Q/2 and

Ct
1~z!5Ct

1~0!cos~vz!2
Q

2

sin~vz!

v
, ~23!

Ct
2~z!5Ct

2~0!cosh~vz!2
Q

2

sinh~vz!

v
, ~24!
he

in
te

g

ns

02191
Ct
3~z!5Ct

3~0!2
Q

2
z ~25!

for z>0. We would like to emphasize that these relatio
hold for z>0 only. Forz<0, we can computeCt

i (z) from
the symmetry conditionCt

i (z)5Ct
i (2z). Consequently, for

zPR, we obtain
Ct~z!55
Ct

1~z!5Ct
1~0!cos~vz!2

Q

2
v21sin~vuzu!, b.a>0

Ct
2~z!5Ct

2~0!cosh~vz!2
Q

2
v21sinh~vuzu!, a.b>0

Ct
3~z!5Ct

3~0!2
Q

2
uzu, a5b.0.

~26!
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Finally, let us determineCt
i (0) by means of Eq.~10! ob-

tained from the delay Fokker-Planck equation~5!. Substitut-
ing Eqs. ~23!–~25! into Eq. ~10!, the variancesCt

i (0) are
found to be

K~t!5Ct~0!

55
Ct

1~0!5
Q

2 S 11bv21sin~vt!

a1bcos~vt! D , b.a>0

Ct
2~0!5

Q

2 S 11bv21sinh~vt!

a1b cosh~vt! D , a.b>0

Ct
3~0!5

Q

2 S 11bt

a1b D5
Q

4a
~11at!, a5b.0.

~27!

We realize that the limiting cases limb↓a,v→0Ct
1(0)5Ct

3(0)
and lima↓b,v→0Ct

2(0)5Ct
3(0) hold. Furthermore, in the

limit of vanishing delay, we reobtain the variance of t
Ornstein-Uhlenbeck process@24#: we haveC0

i (0)5Q/@2(a
1b)# for i 51,2 and C0

3(0)5Q/@4a#. Furthermore, our
analysis includes the well-known result for the Ornste
Uhlenbeck process as a special case. For the Orns
Uhlenbeck process given byv̇(t)52av(t)1AQG(t), the
stationary autocorrelation reads ^v(t)v(t1z)&st
5Q@2a#21exp$2auzu% and is continuous with respect toz but
not continuously differentiable atz50 ~Chap. 3 of Ref.
@24#!. For a.b50, we reobtain this result by recognizin
that Ct

2(0) andv reduce toCt
2(0)5Q/@2a# andv5a, re-

spectively, and Ct
2(z) is given by Ct

2(z)
5Q@2a#21@cosh(az)2sinh(auzu)# which leads to Ct

2(z)
5Q@2a#21@cosh(auzu)2sinh(auzu)#5Q@2a#21exp$2auzu%.

At this junction, it is useful to briefly discuss the domai
of definition of the stationary probability densities~6! related
-
in-

to the three casesb.a>0, a.b>0, anda5b.0. We first
considerb.a>0, that is,Ct

1(0). For b.a>0 andt>0,
we haveb/v<1⇒11bv21sin(vt)>0. That is, the numera
tor of Ct

1(0) does not vanish. As far as the denominator
concerned, we realize that forb.a>0, there exists at*
with t* vP@0,p# such that a1b cos(vt* )50. For t
P@0,t* ) we havea1b cos(vt* ).0. The upper limitt* is
explicitly defined byt* v5arccos$2a/b%,p. In view of
these considerations, the varianceK(t) becomes infinite in
the limit t→t* and the stationary solution~6! exists only for
tP@0,t* ). Next, let us considerCt

i (0) with i 52,3. From
the definitions ofCt

i (0) in Eq. ~27!, we read off thatCt
i (0)

,` for all 0<t,` and i 52,3. Consequently, fora.b
>0 anda5b.0 the Gaussian solution~6! exists for every
delayt. Table II summarizes these results.

Equations~26! and ~27! have previously been derived b
Küchler and Mensch@50# using an approach different from
the one presented here. Actually, our departure point~11! is
the one used by Guillouzicet al. @47#. Therefore, we have
shown here that the approaches by Ku¨chler and Mensch, on
the one hand, and Guillouzicet al., on the other hand, lead t
the same result. Moreover, we are now in the position
analyze stochastic delay systems with respect to the lin
model ~4!.

Our departure point is the hypothesis that we deal wit
system that can be described by the linear stochastic d
equation~4!. First of all, we can corroborate our hypothes
by determining the stationary probability densityPst(x)
5^d„x2X(t)…&st from experimental dataX(t). If Pst corre-

TABLE II. Definition domains of the Gaussian probability den
sity ~6!.

b.a>0 a.b>0 a5b.0

tP@0,v21arccos(2a/b)# t>0 t>0
2-4
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sponds to a Gaussian distribution, we have found suppor
our hypothesis. IfPst differs substantially from a Gaussia
distribution, our hypothesis is falsified. Alternatively, we i
troduce a pseudoforceh̃(x) defined by

h̃~x!52
d

dx
ln Pst~x!. ~28!

From Eq.~6! we appreciate that for a linear stochastic de
system,h̃(x) is linear with respect tox. Consequently, the
observation of a linear pseudoforceh̃(x) would support our
hypothesis that we deal with a linear delay system. Next,
can determine the parametersa, b, andQ for model~4! from
experimental data.Q can be derived from Eq.~15!:

Q522
dCt~z!

dz U
z501

. ~29!

To determine the parametersa andb, we need two equation
involving these parameters. On the basis of the delay Fok
Planck equation~5! we can derive various equations invol
ing a andb and measurable correlation functions of the fo
^Xn(t)Xm(t2t)&st. One example is given by Eq.~8!. An-
other example can be derived by multiplying Eq.~5! with x4

and by integrating the equation thus obtained with respec
x. Then, integration by parts leads to

2a^X4~ t !&22b^X3~ t !X~ t2t!&53Q. ~30!

From Eqs.~8! and~30! andQ given by Eq.~29!, the param-
etersa andb can be computed from

b5
Q

2

3K22^X4~ t !&st

K^X3~ t !X~ t2t!&st2Ct~t!^X4~ t !&st

,

a5
Q22bCt~t!

2K
~31!

with K5K(t)5^X2(t)&st and Ct(t)5Ct(2t)5^X(t)X(t
2t)&st ~see above!. Having determined the parametersa, b,
and Q from experimental data, we can check once ag
whether or not the data are consistent with our hypoth
that we deal with a linear delay system. To this end, we m
plot Pst(x,t;y,t2t;a,b,Q) as predicted by Eq.~7! versus
Pst(x,t;y,t2t) as obtained from the experimental data~for
the sake of convenience, we may restrict our attention
some moments of the form̂Xn(t)Xm(t2t)&st which can
easily be derived from experimental data, on the one ha
and computed from Eq.~7!, on the other hand!. If the theo-
retical result agrees well with the empirical one, we hav
strong indication that our hypothesis was correct. In parti
lar, the data analysis based on the exact stationary solu
given by Eqs.~6! and ~27! is tailored to delay systems fo
which t is a control variable~e.g., see example 6 of Table I!.
If such a delay system is linear or can be linearized~e.g., for
weak noise sources, See Ref.@46#!, we can plotK(t) as
obtained from the experiment againstK(t) as predicted by
02191
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the theory and, in doing so, demonstrate that the linear d
equation~4! can be regarded as an appropriate model for
system under consideration.

B. Nonlinear case: Multivariate Markov process
and data analysis

1. Data analysis based on multivariate Markov processes

We now consider the nonlinear stochastic delay equa
~3!. Before we show how to deriveh(x,y) andQ from ex-
perimental data, we briefly review some fundamental asp
of the data analysis of Markov processes@51–55#. Let X(t)
PV5R describe a Markov process defined by the Lange
equation Ẋ(t)5h(X)1AQ G(t) for t>0 with X(0)5x0.
Then, h(x) corresponds to the first Kramers-Moyal coef
cient D(x) and, by definition ofD, can be computed from
h(x)5D(x)5 limDt→0^X(t1Dt)2X(t)&X(t)5x /Dt which
can be expressed alternatively ash(x)5D(x)
5 limDt→0@Dt#21*V(y2x)P(y;t1Dtux,t)dy using the con-
ditional probability density P(x;tux8,t8)
5P(x,t;x8,t8)/*VP(x,t;x8,t8)dx with P(x,t;x8,t8)5^d„x
2X(t)…d„x82X(t8)…&. Similarly, we may consider a multi
variate Markov process given by the random vectorX(t)
5(X1 , . . . ,XN)PRN satisfying

d

dt
Xk~ t !5hk~X!1AQGk~ t ! ~32!

for k51, . . . ,N with ^Gk(t)&50 and ^Gk(t)G l(t8)&
5dkld(t2t8) @24#. Then, the force vectorh5(h1 , . . . ,hk)
can be computed from the first Kramers-Moyal coefficie
as

hk~x!5Dk~x!5 lim
Dt→0

1

Dt
^Xk~ t1Dt !2Xk~ t !&X(t)5x .

~33!

In the multivariate case, the computation ofh(x) can be
simplified if there is additional information available regar
ing the argumentsx5(x1 , . . . ,xN) of h(x). If we know a
priori that hk(x) depends only onM variables withM,N,
say, onxk1

, . . . ,xkM
, then Eq.~33! becomes

hk~xk1
, . . . ,xkM

!5 lim
Dt→0

1

Dt
^Xk~ t1Dt !

2Xk~ t !&Xk1
(t)5xk1

, . . . ,XkM
(t)5xkM

.

~34!

So far, this fundamental technique for the analysis of Mark
processes has been applied to fluid dynamics, traffic flo
engineering problems, tremor data, economics, and so
~for references see the preceding!. We would like to point out
that this procedure can also be applied to non-Markov p
cesses described by Eq.~32! whereGk denote general fluc-
tuation forces witĥ Gk&50. In this case, the limiting proce
duresDt→0 and ^•••& are interchanged~i.e., in Eqs.~33!
and ~34!, we have^ limDt→0•••& instead of limDt→0^•••&).
2-5
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Since we eventually use a small but finiteDt to carry out the
limit Dt→0 and a large but finite number of samples
compute the mean̂•••&, the order of the limiting proce-
dures is irrelevant.

In the following, we will show how to apply the dat
analysis technique to data obtained from stochastic d
systems. To this end, we build on a recent study in whic
was demonstrated that stochastic delay systems satis
Eq. ~3! can alternatively be described by multivariate Ma
kov processes@49#. Let X(t) be defined by Eq.~3!. Then, for
tP@kt,(k11)t# andk50,1,2, . . . , we canassign toX(t) a
(k11)-dimensional Markov process described by the r
dom variablesXi(t8) satisfying

d

dt8
Xi~ t8!5h„Xi~ t8!,Xi 21~ t8!…1AQG i~ t8! ~35!

for i 50, . . . ,k and t8P@0,t#, whereG i denote again statis
tically independent Langevin forces defined byG i(t2 i t)
5G(t) andX21 is defined byX21(z)5f(z2t), see Fig. 2.

This multivariate Markov process is equivalent to the s
chastic processX(t) defined by the delay equation~3! in the
sense that for everyk, we have

X~ t !5Xk~ t2kt! ~36!

or X(t)5Xk(t8) with t85t2kt. The drift functionh(x,y) in
Eq. ~35! can now be computed from the random variablesXi
andXi 21. From Eq.~34!, it follows that

h~x,y!5 lim
Dt8→0

1

Dt8
^Xk~ t81Dt8!

2Xk~ t8!&Xk(t8)5x,Xk21(t8)5y . ~37!

Equations~36! and ~37! can be used to determineh(x,y)
within an intervaltP@kt,(k11)t# of lengtht based on the
experimental dataX(t). In order to improve the accuracy o
the averagê•••& occurring in Eq.~37!, we need to circum-
vent the constrainttP@kt,(k11)t#. To this end, we con-
sider the joint probability density Pk(x,y)5^d„x

FIG. 2. Description of a stochastic process with delay in ter
of a multivariate stochastic process without delay.
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2Xk(t8)…d„y2Xk21(t8)…& and recognize that in the station
ary caset→` there exists a limit distributionPst(x,y) of the
form limk→`Pk(x,y)5Pst(x,y). Consequently, if the system
under investigation exhibits a stationary behavior for t
stationary condition, indexk becomes arbitrary. Using
Xk(t8)5X(t) and Xk21(t8)5X(t2t) and Pst(x,y)
5^d„x2X(t)…d„y2X(t2t)…&, from Eq. ~37! we obtain

h~x,y!5 lim
Dt→0

1

Dt
^X~ t1Dt !2X~ t !&st;X(t)5x,X(t2t)5y ,

~38!

whereX(t) andX(t2t) denote stationary random variable
of the process under consideration—as indicated. Finally
issue is to determine the fluctuation strengthQ of a stochas-
tic delay system with additive noise. To this end, consider
delay Fokker-Planck equation

]

]t
P~x,t !5

]

]xEV
h~x,y!P~x,t;y,t2t!dy1

Q

2

]2

]x2
P~x,t !

~39!

that corresponds to Eq.~3!. Multiplying Eq. ~39! by x2, in-
tegrating with respect tox, we obtain for the stationary cas
the equivalence

Q52^X~ t !h„X~ t !,X~ t2t!…&st. ~40!

That is, having obtainedh(x,y) from Eq. ~38!, the average
~40! gives us the fluctuation strengthQ.

2. Examples

Our next objective is to demonstrate that Eq.~38! can also
be used under the hypothesis that we deal with ergodic
tems. Then, the ensemble average in Eq.~38! can be replaced
by the time average

h~x,y!5 lim
Dt→0

1

Dt
lim

N0→`

1

N0

3(
i 51

N0

@X~ t i1Dt !2X~ t i !#X(t i )5x,X(t i2t)5y . ~41!

We illustrate the power of Eq.~41! by evaluating artificially
generated trajectoriesX(t). To this end, we simulate stocha
tic delay equations of form~3! by means of an Euler forward
scheme, whereG(t) is obtained from a Box-Mu¨ller algo-
rithm and time is discretized in stepsdt. The limiting case
Dt→0 is then realized by puttingDt5dt.

As a first example, we use the linear stochastic de
equation~4!. First, we have computedX(t i) from Eq. ~4!.
Subsequently, we have evaluated the trajectoryX(t i) by
means of Eq.~41!. Figure 3 illustrates that the model equ
tion ~4! can indeed be reproduced by the proposed d
analysis technique. Second, we consider a model propo
by Tasset al. for oscillatory tracking movements under d
layed visual feedback@22#. The model equation reads

s

2-6
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d

dt
X~ t !52a sin~@VX~ t !2f0#2bsin@VX~ t2t!#

1AQG~ t !, ~42!

whereV describes the oscillation frequency.X(t) describes
the relative phase between the tracking movement and
target motion and denotes a periodic variable defined
@0,2p#. For example,X50 corresponds to a perfect syn
chronization of tracking and target movements. According
Eq. ~42!, tracking movements involve two kinds of contr
mechanisms. Movement control due to proprioceptive fe
back is described by the terma sin@VX(t)2f0# with a>0,
whereas the impact of the visual system is modeled by
expressionbsin@VX(t2t)# with b>0. We assume that th
artificially introduced delaytext dominates intrinsic delays o
the visual system such that the delayt in Eq. ~42! is approxi-
matively given bytext. The variablef0 accounts in a crude
manner for intrinsic delays of the visual and propriocept
systems@see Eq.~39! in Ref. @46# and putf(t)1Vtv is8 /2
5X(t)]. We have simulated Eq.~42! and evaluated a station
ary trajectory by means of Eq.~41!. The result is shown in
Fig. 4. Finally, we consider the tanh model given by

FIG. 3. Data analysis for the linear model~4!. Drift h(x,y)
plotted versusx and y for h(x,0) ~dashed line! and h(0,y) ~solid
line!. Crosses indicate results obtained from the data analysis. L
describe the model equation. Evaluation ofh in 20 bins of width
Dx5Dy50.1. Parameters:a52, b51, t50.2, Q51, N05108,
anddt50.02.

FIG. 4. Data analysis for the delay model~42!. Drift h(x,y) as
a function of x and y for h(x,0) ~dashed line! and h(0,y) ~solid
line!. Crosses represent results obtained from the data ana
Lines describe the model equation. Evaluation ofh in 20 bins of
width Dx5Dy50.1. Parameters:a52, b50.5, t50.2, Q51,
f0520.2, V5p, N05108, anddt50.02.
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d

dt
X~ t !52a tanh@cX~ t2t!#1AQG~ t ! ~43!

for X(t)PR and a.0, c.0. Similar models with drift
forces that vanish in the asymptotic limitx→6` have been
used to describe coordinated human finger movements@56#
and have been discussed in the context of stochastic r
nance@2#. In particular, human motor performance durin
pointing tasks has been modeled in terms of a tanh mo
with parametric noise that reads likedX/dt52a tanh@cX(t
2t)1AQ8G8(t)#, whereG8(t) denotes a fluctuation force
andQ8 describes a fluctuation strength@21#. As pointed out
in Ref. @21#, such a model, however, does not take fluctu
tions into account that directly affect finger positions. Su
fluctuations may be described by extending the origi
model to obtain dX/dt52a tanh@cX(t2t)1AQ8G8(t)#
1AQG(t). In line with our remarks in Sec. I, we may tran
form the parametric model into a model including a mul
plicative noise source like dX/dt52atanh@cX(t2t)#
2aAQ8G8(t)/cosh2@cX(t2t)#1AQG(t). If additive noise
dominates multiplicative noise~e.g., forQ8!Q), we obtain
Eq. ~43!. Equation~43! corresponds to a nonlinear stochas
delay equation of the form

d

dt
X~ t !5h„X~ t2t!…1AQG~ t !. ~44!

For stochastic processes of this kind, Eq.~38! reduces to

h~y!5
1

Dt
^X~ t1Dt !2X~ t !&ust;X(t2t)5y ~45!

and Eq.~41! becomes

h~y!5 lim
Dt→0

1

Dt
lim

N0→`

1

N0
(
i 51

N0

@X~ t i1Dt !2X~ t i !#X(t i2t)5y .

~46!

We have numerically solved Eq.~43! and analyzed the sta
tionary solution by means of Eq.~46!. The result of the data
analysis versus the model equation is shown in Fig. 5.

es

is.

FIG. 5. Data analysis for the tanh model~43!. Results obtained
from Eq. ~43! ~crosses! are plotted against the drift functionh(y)
52a tanh(cy) ~solid line!. Parameters:a52, c5p/2, t50.1, Q
51, N05108, dt50.01, andDx50.2.
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III. CONCLUSIONS

For nondelayed Markov diffusion processesX(t)PV
5R with additive noise satisfying the Langevin equati

Ẋ(t)5h(X)1AQ G(t), the fluctuation strengthQ can be de-
termined using the definition of the second Kramers-Mo
coefficient and the drift forceh can be derived from the
experimentally observed stationary probability densityPst

according toh(x)52Q21d ln Pst(x)/dx. The reason for this
is that there is an analytical relationship betweenPst andh,
namely, Pst(x)5Z21exp$2V(x)/Q% with Z215*Vexp
$2V(x)/Q%dx andV(x)52*xh(x8)dx8, which is invertible.

For stochastic delay systems subjected to additive no
we proposed two methods to determine in the stationary c
from experimental data the drift forces acting on the syste
If the drift forces are linear, we can exploit the aforeme
tioned approach for Markov processes because in this
the analytical form of the stationary probability densityPst
can be determined. We have shown that from autocorrela
functions @such as K5^X2(t)&st, ^X4(t)&st, ^X(t)X(t
2t)&st, and^X3(t)X(t2t)&st], we can derive all parameter
~i.e., a, b, andQ) of linear stochastic delay systems. Havin
obtained these parameters by means of the exact solu
for the stationary probability densityPst(x;K) and the sta-
tionary joint probability densityPst(x,t;y,t2t;a,b,Q), we
can in turn check our hypothesis that we are dealing wit
linear delay system. In order to illustrate this approach,
have derived the stationary probability densityPst for all
parameterst using an approach different from previous a
proaches by Ku¨chler and Mensch, on the one hand, and Gu
louzic et al., on the other hand. In particular, we have de
onstrated how to take advantage of the delay Fokker-Pla
equation proposed by Guillouzicet al. @47#. For nonlinear
stochastic delay systems, analytical descriptions of station
probability densities are not available. Consequently, a co
terpart to the relationh(x)52Q21d ln Pst(x)/dx mentioned
in the preceding is not available. We are confronted wit
situation known from the theory of multivariate Markov pr
cesses described by Fokker-Planck equations. There a
numerous multivariate stochastic processes for which a
lytical expressions for stationary distributions are not av
able ~e.g., Lorenz attractor with white noise!. In such sys-
tems, drift forces can be determined from experimental d
using a direct approach that does not require the knowle
about the stationary probability density of the system un
investigation, e.g., Refs.@53,54#. Using this direct approach
in combination with a reinterpretation of delay systems
multivariate nondelayed systems, we developed a data dr
method in order to determine the drift forces of nonline
stochastic delay systems.

Our considerations were centered around stochastic
tems involving additive noise sources. A more general cl
of stochastic delay systems is described by Eq.~1!. However,
for systems of this kind, it is not at all clear that how
interpret nonlinear expressions ofG(t) such as (X1G)2 or
tanh(X1G) @25#. For example, ifG(t) denotes the random
variable of an Ornstein-Uhlenbeck process, a stochastic
ferential equation as simple asdX/dt52aX1G2(t) re-
quires a tedious and mathematically involved analysis@57#.
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Therefore, as pointed out in the Introduction, a useful stra
gic approach is to consider only weak parametric no
sources and to transform parametric models into models w
multiplicative noise sources. Consequently, in order to g
eralize the results derived in the present paper, one may
Eq. ~2! rather than Eq.~1! as a departure point.

APPENDIX A: DERIVATION OF EQ. „12…

For a stochastic process defined by the linear delay eq
tion ~4!, the evolution of̂ X2(t)& can be obtained from Eqs
~4! and ~5!:

d

dt
^X2~ t !&522a^X2~ t !&22b^X~ t !X~ t2t!&

12AQ^X~ t !G~ t !& ~A1!

and

d

dt
^X2~ t !&522a^X2~ t !&22b^X~ t !X~ t2t!&1Q

~A2!

~see also Ref.@6#!. By comparing these results, we obtain

^X~ t !G~ t !&5
AQ

2
. ~A3!

At issue is now to determine the expression^X(t)G(t1z)&
for z.0. To this end, we will make use of the solution of th
initial value problem ż(t)52az(t)1 f (t) and z(t0)5z0

which reads z(t)5z0exp$2a(t2t0)%1*t0
t exp$2a(t

2t8)%f(t8) dt8. In recognition of this solution, Eq.~4! can be
solved using the method of steps. First, we solve Eq.~4! for
tP@0,t# which gives us

X~ t !5Y1~ t !5f~0!e2at1E
0

t

e2a(t2t8)@AQG~ t8!

2bf~ t82t!#dt8 ~A4!

where we have introduced the functionY1. In particular, we
have

X~t!5Y1~t!5f~0!e2at1E
0

t

e2a(t2t8)@AQG~ t8!

2bf~ t82t!#dt8. ~A5!

Second, we solve Eq.~4! for tP@t,2t# which gives us

X~ t !5Y2~ t !5Y1~ t !e2a(t2t)1E
t

t

e2a(t2t8)

3@AQG~ t8!2bY1~ t82t!#dt8, ~A6!

where we have defined the functionY2. In detail, Eq.~A6!
reads
2-8
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X~ t !5f~0!e2at1E
0

t

e2a(t2t8)@AQG~ t8!2bf~ t82t!#dt8

1E
t

t

e2a(t2t8)FAQG~ t8!2bf~0!e2a(t82t)

2bE
0

t82t
e2a(t82t2t9)$AQG~ t9!

2bf~ t92t!%dt9Gdt8. ~A7!

We can proceed with this approach introducing step by s
auxiliary functions Yn in order to solve Eq.~4! for t
P@nt,(n11)t#. In doing so, we realize thatX(t) can be
written as a superposition of termsLi like

X~ t !5 (
i 51

M (n)

Li@f,G~ t8<t !# ~A8!

with M (n),` for a finite timet. It is clear from Eqs.~A4!–
~A7! that the fluctuation termG(t8) occurs inLi with argu-
ment t8>t as indicated in Eq.~A8!. This fact basically re-
flects the causality of the stochastic process described by
et

A.

er

. E

.

ls

ci
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~4!. Furthermore, from Eqs.~A4!–~A7!, we can deduce tha
the termsLi are linear with respect toG: Li@f,c1f 1(t8)
1c2f 2(t8)#5c1Li@f, f 1(t8)#1c2Li@f, f 2(t8)#. In particu-
lar, we haveLi@f,0#50. With Eq. ~A8! at hand, we can
show that the averagêX(t)G(t1z)& vanishes forz.0:

^X~ t !G~ t1z!&5(
i

^G~ t1z!Li@f,G~ t8<t !#&

5(
i

L i@f,^G~ t1z!G~ t8<t !&#

5(
i

L i@f,0#50. ~A9!

Taking Eqs.~A3! and ~A9! together, we get

AQ^X~ t !G~ t1z!&5HQ/2 for z50

0 for z.0
, ~A10!

for the nonstationary case. In the limitt→`, the arguments
developed so far still hold. In particular Eqs.~A1! and ~A2!
hold, and Eq.~A9! holds with M (n)→` for t→`. Conse-
quently, in the stationary case, Eq.~A10! becomes Eq.~12!.
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@50# U. Küchler and B. Mensch, Stoch. Stoch. Rep.40, 23 ~1992!.
@51# R. Friedrich and J. Peinke, Phys. Rev. Lett.78, 863 ~1997!.
@52# S. Siegert, R. Friedrich, and J. Peinke, Phys. Lett. A243, 275

~1998!.
@53# R. Friedrich, J. Peinke, and C. Renner, Phys. Rev. Lett.84,

5224 ~2000!.
@54# J. Gradisek, S. Siegert, R. Friedrich, and I. Grabec, Phys. R

E 62, 3146~2000!.
@55# C. Renner, J. Peinke, R. Friedrich, O. Chanal, and B. Chab

Phys. Rev. Lett.89, 124502~2002!.
@56# R. Engbert, C. Scheffczyk, R.T. Krampe, M. Rosenblum,

Kurths, and R. Kliegl, Phys. Rev. E56, 5823~1997!.
@57# J. Luczka, P. Ha¨nggi, and A. Gadomski, Phys. Rev. E51, 2933

~1995!.
2-10


